If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2=1152
We move all terms to the left:
2b^2-(1152)=0
a = 2; b = 0; c = -1152;
Δ = b2-4ac
Δ = 02-4·2·(-1152)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*2}=\frac{-96}{4} =-24 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*2}=\frac{96}{4} =24 $
| x/2-4=(3)1/2 | | 24=-6+v/5 | | 7(x-3)-11=23x-112 | | x+1.8=3.79 | | 2x+6=9x-7 | | x^-2=18 | | 2s+4=5(−4− | | -x^2-1.8x+5.4=0 | | 15.50x=25.50 | | 3x-14=21+2x | | 19.25=0.432(h)-10.44 | | 9x-2(2x-6)=4x+14 | | 7n+11=5n+5 | | 4-7x=-6x-5 | | x+1.2=-3.5 | | -26=-14+n | | 4x=7×16 | | 4x+.2=14 | | 4x/15=3x+1/15 | | 47-3x=52 | | .1x-x=150 | | 4x-2.50=$21.50 | | 3(1.25+c)=5.05 | | 7v+11v+-12v−-3v−20v=11 | | 18y+y-18y=13 | | |x-6|-9=-7 | | 2r-r=1 | | 7u-6u=11 | | 16=1/2(43+b^2) | | 15x+24=18x+18 | | 16=1/2(43+b) | | 13b−3b=20 |